Adoption of Conservation Agricultural Practices among Maize Farmers: An Alternative Livelihood to Mitigate Climate Change Impact in Bawku Municipality, Ghana

Alhassan Bawa1,* and Abu T. Jambedu2

1Department of Sustainable Agriculture, Faculty of Agriculture and Natural Resources, Tamale Technical University, Tamale, Ghana
2Milar Institute for Transdisciplinary and Development Studies, Bolgatanga, Ghana
*Corresponding author’s E-mail address: abawai1@yahoo.com

Abstract—The plight of farmers in Northern Ghana are worsening by the impact of climate change. Warming and variability in rainfall pattern is causing floods and long dry spells of drought with resultant effects of reduced food crop and livestock production. Conservation Agriculture (CA) has therefore been introduced as a substitute to conventional agriculture for sustainable agricultural productivity. The objective of the study was to assess the rate of adoption of CA practices in the Bawku Municipality in the Upper East region of Ghana. The study was conducted in the Bawku Municipal area of Ghana. The research design used for the study was the mixed methods. The purposive sampling technique was used to select the Bawku Municipality as the major area where agricultural conservation practices occur in the Upper East region. The simple random sampling technique was used to select ten (10) communities in the Municipality, whilst the systematic random sampling was used to select forty (40) respondents from each community for the study. The target population for the study was maize farmers in the Bawku Municipality. In all, a total of 358 respondents were interviewed for the study. Data was taken on socio-cultural and socio-economic characteristics of respondents. Data analysis was done using the Statistical Package for Social Sciences (SPSS). Descriptive statistics, such as frequencies, percentages, and means were computed. Cross tabulations of variables were also computed and the chi-square tests used to establish relationships. The study revealed that age, sex, level of education, religion, household size, government policy, access to credit, source of income, farm size, and access to extension services were found to have significantly influenced adoption of CA practices. The results of the study indicated that majority of farmers were aware and had knowledge about CA practices. “No-tillage with cover crops, minimum tillage with cover crops, and crop rotation with cover crops” were the main practices of conservation agriculture in the study area. The survey also reveals that 81% of farmers adopted CA practices in full. It is recommended that the Ghanaian government should boost CA practices by instituting an annual national award scheme to award hardworking CA practitioners in Ghana.

Keywords—Conservation agricultural (CA) practice, Conventional tillage; Climate change mitigation, Adoption rate, Socio-economic characteristics

Received: 19 November 2021
Accepted: 7 December 2021
to be the major solution to food security, biodiversity, and water scarcity challenges worldwide (Gattinger et al., 2011).

Conservation Agriculture is defined as a set of agricultural technologies, which includes minimum soil disturbance, zero tillage, permanent soil cover, diversified crop rotations, and integrated weed management (Carter et al., 2009), aimed at reverting the many negative effects of conventional farming practices such as soil erosion, soil organic matter decline, water loss, soil physical degradation, and fuel use (Baker et al., 2002). The residue use as mulches also prevents soil erosion and rainfall infiltration which is common in sub-Saharan Africa. This degradation of the land resource base has caused crops yield and productivity to decline, hence the need to search for an alternative paradigm that is ecologically sustainable as well as profitable (Kassam et al., 2015). For instance, soil erosion, water losses from run-off, and soil physical degradation may be minimized by reducing soil disturbance and maintaining soil cover (Faroq and Siddique, 2014). Using organic materials as soil cover and including legumes in rotations may help to address the decline in soil organic matter and fertility (Kassam et al., 2015). Less soil disturbance results in less fuel use, resulting in lower carbon dioxide emissions, which is one of the gases responsible for global warming (Carter et al., 2009). Again, ICA helps to improve biodiversity in the natural and agro ecosystems (Carter et al., 2009) complemented by other good agronomic practices, such as the use of quality seeds, integrated pest management, and nutrient and water management. Furthermore, CA provides a base for sustainable agricultural production intensification. Also, yield levels in CA systems are comparatively high and even higher than traditional intensive tillage systems (Faroq and Siddique, 2014). Increasing the productivity of maize crops by using nitrogen fixation crops and biomass is a better alternative in increasing food security and food availability among smallholder farmers. CA is increasingly promoted as “a concept of crop production for a sustainable production level to achieve acceptable profit, while saving the resources along with conserving the environment” (Tekle wolod et al., 2013). In CA, modern and scientific agricultural technologies are applied to improve crop production by mitigating reductions in soil fertility, topsoil erosion and runoff; and improving moisture conservation and environmental footprints. I

In Ghana, farming communities have gradually shifted towards no-tillage systems for potential fossil-fuel savings, reduced erosion, and runoff, and to minimize soil organic matter loss. A large percentage of agricultural land is cropped following CA principles (Akowuah, 2010). Land preparation in the early 1980s for crop production in Ghana was mainly through the slash and burn method. As a result of low-pressure on land, farmers could leave their farmlands for some years, after the soil has lost its fertility, to farm another fertile land while the abandoned land regains its fertility. This practice was considered as sustainable because of shifting cultivation (Boahen et al., 2007). However, as population growth, development and industrialization of the nation began to compete with agriculture over limited land, the practice of shifting cultivation has therefore, gradually diminished (Boahen et al., 2007).

Adoption of conservation agricultural innovations has attracted the attention of agricultural scientists, because majority of the population in the less developed countries derived their livelihood from agricultural production (Feder et al., 1982). Government and other development partners such as NGOs and CBOs have therefore provided materials, technical and logistics support to help improve the adoption of CA practices. Sustained governmental policies and institutional support may play a key role in the promotion of ICA both in rain-fed and irrigated cropped lands, by providing incentives and required services to farmers to adopt CA practices and advance them over time (Kassam et al., 2015). The adoption of a new practice is basically an individual decision. The adoption process involves five stages as outlined by Rogers (2003). These stages include the following:

1. Awareness: The individual becomes aware of the existence of an innovation.
2. Interest: The individual develops interest and seeks further information.
3. Evaluation: The individual considers whether to adopt the new practice.
4. Trial: On a small-scale basis, the individual will try the new idea.
5. Adoption: The idea is used on a full-scale basis.

MATERIALS AND METHODS

Research design
The research design is the plan for collecting data to answer the research questions (Bell, 1993). It also includes the specific data analysis technique or methods that the researcher intends to use. Research design is the overall strategies and approaches used in the data collection. The research design used for the study was the mixed methods. That is, it combines quantitative and qualitative methods in data collection and analysis. The instruments that were used for data collection were questionnaires, interview guide and checklist for focus group discussion.

Sampling techniques and sample size
Purposive sampling was used to select the Bawku Municipality as the major area where conservation agricultural practices occur in the Upper East region. The simple random sampling technique was also used to select ten (10) communities in the Municipality, whilst the systematic sampling technique was used to select forty (40) respondents from each community. The target population for the study was maize farmers in the Bawku Municipality. In all, a total of 358 farmers were interviewed. The Snedecor and Cochran (1989) sample size calculation formula was used to determine the sample size for the study:

\[n = \frac{N \times (\pi^2)}{1 + N \times (\pi^2)} \]

Where, \(n \) = sample size
\(N \) = sample frame
\(\alpha \) = margin of error = 5% \((0.05) \)
A total of four hundred (400) farmers were selected. However, after screening, 358 were used for the study.

Data collection and analysis

Both quantitative and qualitative data were collected from primary source for the study. Data was taken from 358 maize farmers through a farm and market survey using interview guide and checklist. Key informants (including stakeholders, nucleus farmers, extension officers, district director of Agriculture and officials of CSIR-SARI at Manga and Garu Presby Agricultural Station) were also interviewed using questionnaire. Secondary data was also gathered from literature, MoFa and CSIR – SARI documents. Both qualitative and quantitative tools of analysis were employed in data analysis. Prior to the analysis, the data was coded. Analysis was done using the Statistical Package for Social Sciences (SPSS). Descriptive statistics, such as frequencies, percentages and means were computed. Cross tabulations of variables were also computed, and the chi-square tests used to establish relationships.

RESULTS

Table 1. Distribution of respondents by gender, age and level of education

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>213</td>
<td>59.50</td>
</tr>
<tr>
<td>Female</td>
<td>145</td>
<td>40.50</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 – 39</td>
<td>250</td>
<td>69.83</td>
</tr>
<tr>
<td>40 – 59</td>
<td>71</td>
<td>19.83</td>
</tr>
<tr>
<td>60 and above</td>
<td>37</td>
<td>10.34</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of education</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No formal education</td>
<td>167</td>
<td>46.65</td>
</tr>
<tr>
<td>Basic education</td>
<td>173</td>
<td>48.33</td>
</tr>
<tr>
<td>Secondary education</td>
<td>9</td>
<td>2.51</td>
</tr>
<tr>
<td>Tertiary education</td>
<td>9</td>
<td>2.51</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field Survey, 2020

Table 2. Distribution of respondents by marital status, religion, access to extension services and access to government policy

<table>
<thead>
<tr>
<th>Marital status</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmarried</td>
<td>126</td>
<td>35.50</td>
</tr>
<tr>
<td>Married</td>
<td>191</td>
<td>53.35</td>
</tr>
<tr>
<td>Divorced</td>
<td>27</td>
<td>7.54</td>
</tr>
<tr>
<td>Widow(er)</td>
<td>2</td>
<td>0.56</td>
</tr>
<tr>
<td>Separated</td>
<td>12</td>
<td>3.35</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Religion</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christian</td>
<td>90</td>
<td>25.14</td>
</tr>
<tr>
<td>Islam</td>
<td>200</td>
<td>55.87</td>
</tr>
<tr>
<td>Traditionalist</td>
<td>68</td>
<td>18.99</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Access to extension services</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>166</td>
<td>46.37</td>
</tr>
<tr>
<td>No</td>
<td>192</td>
<td>53.63</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Access to government policy</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>295</td>
<td>74.02</td>
</tr>
<tr>
<td>No</td>
<td>93</td>
<td>29.90</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field Survey, 2020
Table 3. Distribution of respondents by socio-cultural characteristics and adoption of CA practices

<table>
<thead>
<tr>
<th>Socio-cultural characteristics</th>
<th>Adoption of CA practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>59.50</td>
</tr>
<tr>
<td>Female</td>
<td>40.50</td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = 0.362$; df = 1; $P > 0.05$; Non-significant</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>20 – 39</td>
<td>69.83</td>
</tr>
<tr>
<td>40 – 59</td>
<td>19.83</td>
</tr>
<tr>
<td>60 and above</td>
<td>10.34</td>
</tr>
<tr>
<td>$\chi^2 = 4.260$; df = 2; **$P < 0.01$; Significant</td>
<td></td>
</tr>
<tr>
<td>Level of education</td>
<td></td>
</tr>
<tr>
<td>No formal education</td>
<td>46.65</td>
</tr>
<tr>
<td>Basic education</td>
<td>48.33</td>
</tr>
<tr>
<td>Secondary education</td>
<td>2.51</td>
</tr>
<tr>
<td>Tertiary education</td>
<td>2.51</td>
</tr>
<tr>
<td>$\chi^2 = 2.068$; df = 3; **$P < 0.01$; Significant</td>
<td></td>
</tr>
<tr>
<td>Religion</td>
<td></td>
</tr>
<tr>
<td>Christian</td>
<td>25.14</td>
</tr>
<tr>
<td>Islam</td>
<td>55.87</td>
</tr>
<tr>
<td>Traditionalist</td>
<td>18.99</td>
</tr>
<tr>
<td>$\chi^2 = 0.137$; df = 2; $P > 0.05$; Non-significant</td>
<td></td>
</tr>
</tbody>
</table>

$\chi^2 = \text{chi-square}; \text{df} = \text{degrees of freedom}$

Table 4. Distribution of respondents by source of household income, farm size, household size and access to credit

<table>
<thead>
<tr>
<th>Source of household income</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming</td>
<td>270</td>
<td>75.42</td>
</tr>
<tr>
<td>Farming + rearing of animals</td>
<td>13</td>
<td>3.63</td>
</tr>
<tr>
<td>Farming + rearing of animals + off-farm activities</td>
<td>75</td>
<td>20.95</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Farm size (acres)</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 5</td>
<td>275</td>
<td>76.82</td>
</tr>
<tr>
<td>6 – 10</td>
<td>74</td>
<td>20.67</td>
</tr>
<tr>
<td>10 and above</td>
<td>9</td>
<td>2.51</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household size</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 5</td>
<td>229</td>
<td>63.97</td>
</tr>
<tr>
<td>6 – 10</td>
<td>111</td>
<td>31.00</td>
</tr>
<tr>
<td>11 and above</td>
<td>18</td>
<td>5.03</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Access to Credit</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>147</td>
<td>41.06</td>
</tr>
<tr>
<td>No</td>
<td>211</td>
<td>58.94</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field Survey, 2020
Table 5. Distribution of respondents by socio-economic characteristics and adoption of CA practice

<table>
<thead>
<tr>
<th>Socio-economic characteristics</th>
<th>Adoption of CA practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household size</td>
<td></td>
</tr>
<tr>
<td>1 – 5</td>
<td>63.97</td>
</tr>
<tr>
<td>6 – 10</td>
<td>31.00</td>
</tr>
<tr>
<td>11 and above</td>
<td>5.03</td>
</tr>
</tbody>
</table>

$\chi^2 = 2.242; \text{ df } = 2; \text{ *P} < 0.5; \text{ Significant}$

Access to credit

<table>
<thead>
<tr>
<th>Access to credit</th>
<th>Adoption of CA practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>41.06</td>
</tr>
<tr>
<td>No</td>
<td>58.94</td>
</tr>
</tbody>
</table>

$\chi^2 = 1.068; \text{ df } = 1; \text{ **P} < 0.01; \text{ Significant}$

Farm size (acres)

<table>
<thead>
<tr>
<th>Farm size (acres)</th>
<th>Adoption of CA practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 5</td>
<td>76.82</td>
</tr>
<tr>
<td>6 – 10</td>
<td>20.67</td>
</tr>
<tr>
<td>10 and above</td>
<td>2.51</td>
</tr>
</tbody>
</table>

$\chi^2 = 4.260; \text{ df } = 2; \text{ **P} < 0.01; \text{ Significant}$

Source of household income

<table>
<thead>
<tr>
<th>Source of household income</th>
<th>Adoption of CA practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming</td>
<td>75.42</td>
</tr>
<tr>
<td>Farming + rearing of animals</td>
<td>3.63</td>
</tr>
<tr>
<td>Farming + rearing of animals + off-farm activities</td>
<td>20.95</td>
</tr>
</tbody>
</table>

$\chi^2 = 10.362, \text{ df } = 3, \text{ ***P} < 0.001 \text{ Significant}$

$\chi^2 = \text{ chi-square; df = degrees of freedom}$

Table 6. Distribution of respondents by knowledge and perception about CA practices, and specific CA practices already adopted in the area

<table>
<thead>
<tr>
<th>Farmers have heard about conservation agriculture</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreed</td>
<td>292</td>
<td>81.72</td>
</tr>
<tr>
<td>Disagreed</td>
<td>66</td>
<td>18.28</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CA practices</th>
<th>Frequency</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-tillage with cover crops</td>
<td>33</td>
<td>9.22</td>
</tr>
<tr>
<td>Minimum tillage with cover crops</td>
<td>249</td>
<td>69.55</td>
</tr>
<tr>
<td>Crop rotation with cover crops</td>
<td>65</td>
<td>18.16</td>
</tr>
<tr>
<td>Residue/Biomass retention</td>
<td>11</td>
<td>3.07</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field Survey, 2020
Socio-cultural characteristics of respondents and adoption of CA practices

The study reveals a significant correlation between socio-cultural characteristics of respondents and adoption of conservation agricultural (CA) practices. The socio-cultural characteristics include gender, age, religious affiliation, level of education, marital status, access to extension services and access to government policies. The chi-square test results show that at 5% confidence level, there was a significant ($\chi^2 = 4.260; \text{df} = 2; P < 0.01$) difference between distribution of respondents by level of adoption of CA practices with respect to their ages (Table 3). However, the chi-square results did not show any significant ($\chi^2 = 0.362; \text{df} = 1; P > 0.05$) difference between distribution of respondents by level of adoption of CA practices with respect to their gender.

Socio-economic characteristics of respondents and adoption of CA practices

The study reveals a significant correlation between socio-economic characteristics of respondents and adoption of conservation agricultural (CA) practices. The socio-economic characteristics include household size, access to credit, farm size and source of household income. The chi-square test results show that at 5% confidence level, there was a significant ($P < 0.05$) difference between distribution of respondents by level of adoption of CA practices with respect to their farm size, access to credit, household size and source of household income (Table 5).

Knowledge and perception of respondents about CA

The knowledge and perception of respondents about conservation agricultural practices is very essential in examining the factors that influences its adoption. Out of the total sample, 292 respondents (81.72%) agreed having heard about conservation agriculture, whilst 18.28% disagreed (Table 6).

The results in Table 6 showed that majority of respondents were of the view that the most specific CA practice that is already adopted in the area was ‘minimum tillage with cover crops’. This was followed by ‘crop rotation with cover crops’ (18.16%) and ‘No-tillage with cover crops’ (9.22%). However, the least specific adopted (3.07%) CA practice was ‘residue/biomass retention’.

In a focus group discussion, the respondents expressed the following opinion:

[Some of the main CA practices in the Bawku municipal area include No-tillage, minimum tillage, crop rotation, crop residues retention and other soil management practices like compose application, animal manure application, and tree planting. ‘These CA practices are as old as Agricultural production itself’, the respondents concluded. According to the respondents, the practices of]
Specific CA practices already adopted in the area

Discussions

Socio-cultural characteristics of respondents

The study revealed that majority of the farmers were males. The implication is that farming is a male dominated profession in the Bawku municipality. This finding supports the observation made by GSS (2016) that 95.0% of farmers in the Bawku municipality are males with the remaining 5.0% being females. Males are traditionally seen as the ones that control the family lands and are at the centre-stage of decision-making regarding farming and its associated activities, while their female counterparts do not take an active decision regarding technology adoption (CIMMYT, 1993). This is reinforced by the cultural system which requires women to remain at home while men attend seminars, and yet do not always discuss/teach the women what they have learnt (Mazvimavi and Twomlow 2009). The researchers also reported that women do not have access to the key productive resources of land, labour, and capital, and that they are also underprivileged in terms of education and knowledge.

Farmers within the age bracket of 20 – 39 years were in the majority. Farmers within this age group are in their active age. Amir (2006) and Akudugu et al. (2012) also reported that younger household heads are more dynamic with regards to the adoption of innovations. In Karatu district, many youths (20 –25 years) and some adults (36–60 years) were ready to adopt conservation agriculture technologies. Youths were eager because they are more business-minded. However, lack of capital has prevented many from adopting. Some youths did not have their own land, or they have only a small area obtained from their parents; hence they were not motivated to invest in agriculture (Shetto and Owaya, 2007). Akudugu et al. (2012) reported that older farmers tend to be risk-averse and may avoid innovations to avoid the risk associated with the initiative. The researchers furthermore observed that older people are relatively more conservative and hence, resistance to change. Mazvimavi and Twomlow (2009) also reported that older farmers with high farming experience are more likely to practice all CA technologies. This is because, they are expected to use their farming experience to decide, whether, to adopt a new technology.

The study also revealed high illiteracy rate among majority of maize farmers. High illiteracy rate is likely to reduce adoption of conservation agricultural practices. This is because education helps to improve the farmer’s ability to easily determine which agricultural activity to undertake in a particular area. Level of education and training influences adoption decisions because of the assumed link between education and knowledge.

Adoption of conservation agriculture

The survey reveals that majority of respondents (81.72%) adopted conservation agricultural practice whilst 18.28% did not (Fig. 1).

Religious membership in a social grouping, such as faith based organization in social linkages influence access to information. The study showed that Islam is the major religious grouping in the Bawku municipal area. This implies that information relating to CA adoption should be targeted at the mosques, so it could descend to majority of the farmers. Mignouna et al. (2011) reported that farmers within a social group learn from each other the benefits and usage of a new technology. They found membership in a social grouping, such as a faith-based society, to have a positive and significant influence on the tendency to adopt improved pigeon pea varieties. In addition, Uaieni et al. (2009) suggests that social network effects are important for individual decisions, and that, in the context of agricultural innovations, farmers share information and learn from each other.

The survey reveals that majority of farmers have access to and benefited from government policies. Government policies are likely to influence farmers’ decisions to adopt or not to adopt conservation agriculture practices. The results corroborate the observation made by Arslan et al. (2012) who reported that Government policies in the form of subsidies, fertilizer, inputs, and machines for CA farmers help farmers to adopt CA. However, Djokoto et al. (2016) observed that government subsidies may serve as a disincentive to the use of organic soil amendments. Danso-Abbeam et al. (2017) also reported that a high dependence on government grants and other benefits, rather than direct farm proceeds as an income source, may also demotivate smallholders to adopt innovations like CA.

Socio-economic characteristics of respondents

It was revealed from the study that majority of the farmers were in small households. The results further showed that majority of respondents were smallholder farmers with no access to credit. It is regularly hypothesized that owners of larger scale farms are more willing to invest in new technologies such as direct seed drills. Sodjinou et al. (2015) explain that large households serve as potential labour for farming. They further argue that large families enable household members to earn additional income from non-farm activities. Though large households signify the availability of labour, it also has some financial implication in terms of feeding, healthcare, education, and clothing. Many households’ size can therefore constitute an economic burden. Sodjinou et al. (2015) also reported that access to credit increases the likelihood of a household adopting hybrid maize in their study area. They further observed that access to credit is a major constraint faced by households. However, access to funds/credit is likely to increase the rate of adoption of CA. Due to poverty and limited access to credit, most small-scale farmers in the country are unable to
afford basic production technologies such as fertilizers and other agrochemicals resulting in low crop yields (Birner and Resnick, 2010).

Socio-economy-cultural characteristics of respondents and adoption of CA practices

The study reveals a significant correlation between socio-cultural characteristics of farmers and adoption of conservation agricultural (CA) practices. The socio-cultural characteristics include gender, age, religion, level of education, marital status, access to extension services and access to government policies. The chi-square test showed that at 5% confidence level, there was a significant ($\chi^2 = 4.260; \text{df} = 2; **P<0.01$) difference between distribution of farmers by level of adoption of CA practices with respect to their ages. This implies that adoption of CA practices is dependent on age of farmers. This result corroborates with the observation made by Okoye (1998) who reported positive significant correlation between age and adoption of conservation agriculture. Clay et al. (1998) however, reported negative correlation between age and adoption of CA practice. However, the chi-square results did not show any significant ($\chi^2 = 0.362; \text{df} = 1; \text{P}>0.05$) difference between distribution of farmers by level of adoption of CA practices with respect to their gender. This implies that adoption of CA practices is not dependent on gender of farmers. The results also showed that at 5% confidence level, there was a significant ($\chi^2 = 2.068; \text{df} = 3; **\text{P}<0.01$) difference between distribution of farmers by level of adoption of CA practices with respect to their level of education. This implies that adoption of CA practices is dependent on level of education of farmers. This finding, however, contradenses the report of Saltiel et al. (1994) who found education to be an insignificant factor in technology adoption.

The study also reveals a significant correlation between socio-economic characteristics of farmers and adoption of conservation agricultural (CA) practices. The socio-economic characteristics include household size, access to credit, farm size and source of household income. The chi-square test showed that at 5% confidence level, there was a significant ($\chi^2 >0.5$) difference between distribution of farmers by level of adoption of CA practices with respect to their farm size, access to credit, household size and source of household income. The implication is that adoption of CA practices is dependent on household size, access to credit, farm size and source of income of farmers.

The survey shows that majority of the farmers in the study area already have some knowledge and perception about the conservation agricultural practice. Farmers’ perception about the performance of the technologies significantly influences their decision to adopt them. This finding is in consonance with the observation made by Karugia et al. (2004) who reported that it was important to involve farmers in the evaluation of new technologies before introducing it to them, so they can assess its suitability to their circumstances.

CONCLUSIONS

The results show that majority of farmers were of the view that the most specific CA practice that is already adopted in the area was ‘minimum tillage with cover crops’. This was followed by ‘crop rotation with cover crops’ and ‘no-tillage with cover crops. However, the least specific adopted CA practice was ‘residue/biomass retention’. This finding contradicts the observation of Kassam et al. (2015) who found CA adoption rate to be low. The finding, however, agrees with the position of Fernandes et al. (1981) who share the view that conservation tillage (CT) is an old age practice that was borne out of the American dust bowl of the 1930s. However, conservation tillage was re-packaged by researchers and promoted as if it was a new technology.

ACKNOWLEDGEMENT

The authors do acknowledge the critical comments and scientific inputs made by all researchers of Millar Institute for Transdisciplinary and Development Studies, Bolgatanga.

REFERENCES

Okoye, C. I1998. Comparative analysis of factors in the adoption of traditional and recommended ISoil erosion
control practices in Nigeria. Soil and Tillage Research 45: 251–263.

Rogers IEM. I2003. Diffusion of Innovations (5th ed.).
London: Free Press.

African Conservation Tillage Network, Centre de Coopération Internationale de Recherche Agronomique pour Ile Développement, IFood Iand IAgriculture Organization Iof Ithe IUnited INations,
IRome, IItaly. I146pp.

Agricultural and Food Economics 3 I(12): I1-22.

Uaiene, R., Arndt, C. and Masters, W. 2009. Determinants of Agricultural Technology Adoption in Mozambique. Discussion papers No. 67E.