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Abstract— Climate-smart agriculture (CSA) seeks to improve adaptation and mitigation to climate change and eventually, improve 

the productivity and sustainability of farming. However, CSA adoption particularly among smallholder farmers in developing 

countries remains low in spite of its potential benefits of improving productivity. Also, empirical evidence of the linkage between 

CSA adoption and technical efficiency (TE) of smallholder farmers remains scanty. This study therefore examined the drivers of 

adoption of CSA practices (CSAPs) and how adoption intensity affects TE of smallholder maize production in Wa East District 

of Ghana. Relying on survey data, generalized Poisson regression and stochastic frontier analysis, the study observed that uptake 

of multiple CSAPs increased TE of maize producers. The study therefore recommends the provision of CSA training and 

awareness creation to encourage uptake of multiple CSAPs to increase TE of smallholder maize producers. 
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INTRODUCTION 

Smallholder farming plays a significant role in the 

livelihood of rural households in many developing 

countries. Agriculture serves as a major economic activity 

for the majority of rural dwellers in Ghana and is the main 

livelihood source (Kamara et al., 2019). Farming systems 

are experiencing changing patterns and dynamics as part of 

agrarian change arising from globalization and change in the 

climate (Yeboah et al., 2020). The adverse impact of climate 

change (CC) and variability on socio-economic activities 

and the environment has an increasing effect on crop 

production, thus affecting the welfare of smallholder 

farmers (Adu et al., 2018). Research indicates that the 

incidence of climate variation and its related deleterious 

effects is high on rural dwellers who depend on agriculture 

for their living (Cobbinah & Anane, 2016). Oxford Business 

Group (2019) reports that Africa’s overall agriculture 

contributes approximately 15% to the global gross domestic 

product (GDP) but this is threatened by CC through lower 

fertility of the soil, erratic rainfall, high temperatures, floods, 

and droughts. Climate change poses a critical threat to 

humans and the environment (Derbile et al., 2022). The 

developmental challenges of Africa especially Ghana cannot 

be addressed until measures are put in place to change the 

indigenous farming systems which is threatened by CC. The 

promotion of adaptation, resilience, and mitigation 

mechanisms are key factors required to reduce and avert low 

agricultural productivity among smallholder farmers in most 

developing countries (Mabuku et al., 2019). 

Climate-smart agriculture (CSA) has been touted as an 

appropriate response for reducing the negative impact of CC 

on smallholder agriculture in policy and development circles 

(Damba et al., 2021). The promotion of CSA is intended to 

integrate climate responsiveness to agriculture by increasing 

sustainable adaptation, productivity, and food security and 

also reducing the emission of harmful gases through 

agricultural activities (Ho & Shimada, 2019). The concept 

of CSA is new and evolving; however, some of its practices 

already existed for long (Chinseu et al., 2019). According to 

Martey et al. (2020), CSA practices have shown great 

potential to address the impact of extreme CC and improve 

the sustainability of maize cultivation in Ghana, especially 

in the semi-arid regions. The challenge is that smallholder 

farmers adopt CSA practices differently across a varied 

spectrum of practices, while some also abandon the practices 

due to lack of training and information about the benefits. 

Consequently, farmers have not derived the full benefits 

associated with CSA adoption such as improvement in 

maize production, reduction in poverty, and increase in food 

security among rural households (Khataza et al., 2018). 

Nonetheless, CSA has the prospect to contribute to meeting 

the Sustainable Development Goals (SDGs) which target to 

end hunger and reduce poverty (SDG 1 and 2).  

Farmers over the years have relied on some traditional 

and emerging adaptation approaches to lessen the impact of 

CC on productivity and their livelihoods. Smallholder 

farmers in Ghana depend largely on rainfall agriculture, 

which consequently increases their susceptibility to the 

effects of climate change and variability (Derbile et al., 

2022; Dinko, 2017). Thathsarani and Gunaratne (2018) 
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posited that smallholder farmers with limited resources are 

prone to a higher risk of CC regardless of their location. 

Present evidence in literature indicates that the incidence of 

climate shocks such as droughts and floods affect farmlands 

across the country, hence affecting productivity (Adzawla & 

Alhassan, 2021). These CC shocks contribute to household 

poverty, reduce resilience and safety, and reduce food 

security in Ghana.  

In order to reduce the influences of CC, farmers are 

encouraged to adopt coping strategies. Governmental and 

private organizations have over the years invested in various 

CC adaptation approaches to attain climate-smart 

sustainable food systems that reduce food insecurity in the 

midst of CC (Sam et al., 2021). Notwithstanding its benefits, 

little research attention has been paid to CSA adoption and 

its effect on farm performance, especially production 

efficiency. Thus, while the literature abounds with evidence 

of factors inducing uptake of CC adaptation strategies, little 

attention has been given to the impact of adaptation 

strategies on production efficiency of smallholder farmer 

households.  

Technical efficiency (TE) of maize production has been 

investigated extensively in Ghana. Several researchers 

(Anang et al., 2022; Issahaku, & Abdulai, 2020; Kwawu et 

al., 2022; Tsiboe et al., 2022) have found high level of 

inefficient in the production of maize in Ghana. However, in 

the context of Ghana, there are not many studies that assess 

the effect of CSA adoption on TE of smallholder maize 

production. This means that there is little empirical evidence 

of the influence of CSA adoption on farmers’ efficiency, 

which is necessary for effective policy formulation to 

alleviate the effects of CC and promote production 

efficiency. This study therefore fills a critical research gap 

by elucidating the effect of adopting multiple CSA practices 

on the efficiency of maize producers in the northern savanna 

ecological area of Ghana, specifically in the Wa-East Distrit 

of Ghana. The study is also important because the northern 

savanna ecological zone of Ghana is semi-arid and faces the 

brunt of CC more than other ecological zones on the country.  

LITERATURE REVIEW 

Climate-smart agriculture and technical efficiency of 

maize production  

Climate-smart agriculture, which is defined as any 

improved agricultural practice, technology, or intervention 

undertaken to sustainably increase crop yield, build adaptive 

capacity, and remove or reduce greenhouse gas emissions 

from agricultural activities (Zougmoré et al., 2019), is one 

strategy for combating the effects of CC. Previous research 

has shown that employing CSA techniques can effectively 

reduce the risks associated with climate variation and 

agricultural systems (Issahaku & Abdulai, 2020). The goal 

of CSA is to revolutionize the agricultural industry and 

enhance food security in the face of a changing climate 

through a comprehensive planning of agricultural operations 

that is characterized by creating connections between efforts 

at adaptation and mitigation (Lipper et al., 2014). 

The choice to adopt CSA techniques involves a 

behavioral reaction and is thus modeled within the random 

utility framework (Kassie et al., 2018), where a farmer 

selects components of CSA practices that increase utility. In 

line with Pannell et al. (2014), we view the decision of a 

household to adopt CSA practices in a particular year as a 

restricted optimization problem, where the choice to adopt 

CSA practices on a polychotomous basis depends on a 

variety of factors, including the information available, the 

relative costs and benefits of the CSA practices, and 

socioeconomic conditions of the farmer. A smallholder 

farmer may choose to adopt one or a multiple of the CSA 

practices. Examples of the CSA practices include 

conservation agriculture, climate information services, 

agroforestry practices, erosion control methods, among 

others (Partey et al., 2018; FAO, 2013).  

CSA techniques primarily focus on ensuring effective 

and responsible use of non-renewable resources in a way 

that allows for the maintenance of the economic 

sustainability of agricultural activities, TE as well as the 

development of a generally acceptable quality of living and 

environmental protection (Ho & Shimada, 2019). Farmers 

are one of the most important groups in the agricultural 

system when it comes to managing natural resources, and 

they have a crucial role to play in ecosystem protection 

(Tong et al., 2019). Indeed, risks to the ecosystem across the 

world are caused by human conduct that is not sustainable 

(Tong et al., 2019). Therefore, to achieve agricultural 

sustainability and TE, the promotion of CSA at the farmer 

level is required (Imran et al., 2019). 

Climate variability has a negative impact on farm 

performance as well as the environment and society, 

endangering smallholder agricultural production and 

threatening rural livelihoods (Taylor, 2018). This calls for 

the promotion and adoption of CSA methods to increase 

food security, resilience to climate shocks, and adaptation to 

CC to ensure sustainable agricultural production, and 

improve the TE of maize production (Taylor, 2018). Maize 

is a major staple in most Ghanaian communities and the 

most important cereal crop, hence its choice for this study. 

A large portion of the CSA literature on developing nations 

(Imran et al., 2022; Mo et al., 2023; Mizik, 2021) indicate 

that crop output and agricultural revenue may be increased 

by farmers in the face of climatic stresses by adopting 

adaptation strategies like crop rotation, irrigation 

technologies, conservation agriculture, climate information 

services, agroforestry practices, and erosion control methods 

(Partey et al., 2018; FAO, 2013). For example, according to 

Thierfelder et al. (2015), conservation agriculture has 

beneficial impact on maize yield response across a variety 

of agro-ecosystems in southern Africa as opposed to 

conventional system of production. Also, row planting, a 

CSA component, has the ability to boost efficiency, 

agricultural output and incomes as well as increase 

resiliency to climatic shocks (Fantie & Beyene, 2019). 

Similarly, the use of CSA has been identified to 

significantly boost yield, resource efficiency, net farm 

revenue, as well as decrease greenhouse gas emissions and 

the utilization of restricted resources (Mizik, 2021; Imran et 

al., 2019; Khatri-Chhetri et al., 2016). However, in Sub-
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Saharan African nations like Ghana, there are few studies 

that have examined how different agricultural technology 

and management techniques affect farm revenue, 

productivity, and resource use effectiveness (Hussain et al., 

2017; Imran et al., 2019; Akrofi-Atitianti et al., 2018).  

Researchers have over the years paid attention to 

estimating the efficiency of peasant farmers to promote food 

security and decrease poverty in developing nations. Maize 

production is associated with high level of technical 

inefficiency, according to studies examining efficiency of 

small-scale farmers across Africa. From the findings of 

studies in Zambia (Ng'ombe, 2017) and Senegal (Okuyama 

et al., 2017), the mean TE of maize production ranges 

between 21% and 94%. Kibirige et al. (2014) estimated the 

average TE of maize production around 70%.  

Crop-specific efficiency assessments make it possible to 

identify the characteristics specific to each crop that affect 

efficiency and this may help to formulate crop-specific 

policy strategies to increase household food security by 

increasing crop yield. It is important to comprehend the 

degree of TE of peasant maize cultivation and the factors 

impacting it given the rising economic significance of maize 

in Ghana. 

MATERIALS AND METHODS 

Study area  

The research was carried out in Wa East District in the 

Upper West region of Ghana. The selection of the district 

was based on the area’s location in the northern savanna 

ecological zone which is semi-arid and prone to climate 

shocks. Furthermore, the selection of the district was based 

on the fact that the area has received little research focus on 

climate-smart agriculture despite its agricultural potential 

and the potential impact of climate variability on production 

activities of farmers. Maize is an important crop grown by 

most farm households in the district. The study area 

experiences unimodal rainfall with CC and its effect being 

evident in the area based on previous records of droughts, 

floods, high temperatures, and erratic rainfall patterns which 

affect crop production, especially cereal cultivation. The 

major crops cultivated in the district range from roots and 

tubers, cereals, and grain legumes such as soybeans, 

groundnut, among others. Figure 1 shows the map of the 

area of study. 

 

 
Figure 1. Map of Upper West region of Ghana 

 

Sampling and data collection  

Cross-sectional household data from 350 small-scale 

maize producers in 6 communities across the Wa East 

district in the Upper West region of Ghana was used for the 

study. Multi-stage sampling technique was used in the data 

collection. This involved the selection of the Wa East district 

purposively, followed by the sampling of 6 communities in 

the district. In the next stage, individual smallholder farmers 

were randomly sampled from the selected communities with 

the aid of a semi-structured questionnaire. The information 

solicited from the farmers included production and output 

data, farmers’ socioeconomic characteristics, CSA adoption, 

access to agricultural extension and credit, among others. 

Method of data analysis: The Generalized Poisson (GP) 

regression model 

The Generalized Poisson (GP) regression model was 

used to assess the determinants of adoption intensity of 

CSAPs based on the nature of the response variable and test 

of dispersion of the count variable. The GP model is 
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generally used for estimating count data and has the 

advantage of dealing with under-dispersed data, unlike the 

standard Poisson model which is suitable only when the data 

displays equi-dispersion (that is, when the mean of the count 

dependent variable is equal to the variance) (Consul & 

Famoye, 1992). The dependent variable for the GP model in 

this study is the number of CSA practices adopted by a 

respondent.  

Considering the GP model, the probability mass function 

assumes the form  

𝑓(𝑦𝑖𝜃𝑖𝛿) =  
𝜃𝑖(𝜃𝑖+𝛿𝑦𝑖)𝑦𝑖−1

𝑦𝑖!
    𝑦𝑖 = 0, 1, 2, … (1) 

where 𝜃𝑖 > 0, and 𝑚𝑎𝑥(−1, −𝜃𝑖/4) < 𝛿 < 1.    

This implies that the mean and variance of the random 

GP variable  𝑌𝑖 are given as  

𝜇𝑖 = 𝐸(𝑦𝑖) =
𝜃𝑖

1−𝛿
 , 𝑉𝑎𝑟(𝑦𝑖) =

𝜃

(1−𝛿)3 =

1

(1−𝛿)2 𝐸(𝑦𝑖) = ∅𝐸(𝑦𝑖)   (2) 

The term ∅ = 
1

(1−𝛿)2  plays the role of the dispersion factor. 

Its value determines the type of dispersion. When 𝛿 = 0, the 

data exhibits equi-dispersion, but over-dispersion and 

under-dispersion prevails when 𝛿 > 0 and 𝛿 <
0 respectively. 

The empirical structure of the GP model takes the 

following form 

𝑙𝑜𝑔
𝜃𝑖

1−𝛿
= ∑ 𝑥𝑖𝑟𝛾𝑟

𝑝
𝑟=1     (3) 

where 𝑥𝑖𝑟  represent the covariates influencing adoption 

intensity,  𝑝 denotes the number of covariates, and 𝛾𝑟 
denotes parameters to be estimated. 

Stochastic Frontier Analysis  

Stochastic frontier analysis (SFA) was used to evaluate 

the TE of maize production. Three measures of efficiency 

which have made efficiency analysis popular in the literature 

include economic, allocative, and TE (Farrell, 1957). This 

study focuses on TE which implies the attainment of the 

highest output with the least amount of input. Efficiency can 

be estimated either with the nonparametric (data enveloping 

analysis or DEA) or the parametric (SFA) approach. The 

SFA approach suits the objective of this study, hence its 

application to fit the data. This is because it has the ability 

to account for the stochastic nature of agricultural 

production and also easily accommodates the inclusion of 

contextual variables such as CSA practices in either the 

production function or inefficiency model, or both. 

The stochastic frontier model is represented as  

𝑄𝑖 = 𝛽0 + 𝛽𝑋𝑖 +  𝑒𝑖       (4) 

where 𝑄𝑖  represents the output variable, 𝑋𝑖 represents the 

input quantities, 𝛽 is the unknown parameters to be 

estimated, and 𝑒𝑖 is the random disturbance term which 

consists of the inefficiency in production (𝑢𝑖) as well as 

statistical noise (𝑣𝑖). Thus, 𝑒𝑖 is represented as follows: 

𝑒𝑖 = 𝑣𝑖 − 𝑢𝑖    (5) 

Equation (4) can be expressed as  

          𝑄𝑖 = 𝑓(𝑋𝑖𝛽) exp(𝑣𝑖 − 𝑢𝑖)    (6) 

where 𝑓(. ) can assume any production functional form. For 

the purpose of this study, the Cobb-Douglas functional form 

was employed and this was based on an empirical test using 

the likelihood ratio test. The Cobb-Douglas specification, 

though more restrictive compared to the translog model, 

does not suffer from multicollinearity issues, and has been 

widely used in other studies (see Anang et al., 2016; 

Abdallah & Abdul-Rahman, 2017; Boateng et al., 2022). 

     Technical efficiency, which measures the proportion of 

observed output to the maximum frontier output, can be 

estimated as  

           𝑇𝐸 =
 𝑄𝑖

𝑄𝑖
∗ =

𝑓(𝑋𝑖𝛽) exp(𝑣𝑖−𝑢𝑖)

𝑓(𝑋𝑖𝛽) exp(𝑣𝑖)
   (7) 

Therefore, technical efficiency is given as 

𝑇𝐸 =  exp(−𝑢𝑖)    (8) 

The input variables used in the production function 

include farm size, quantity of labour, seed, fertilizer, as well 

as cost of ploughing and value of farm capital. The variables 

in the inefficient model include the intensity of CSA 

adoption, respondent’s age, sex, years of education, cattle 

ownership, farming experience, farmer group membership, 

access to farm credit, and land ownership. 

The CSA adoption variable is potentially endogenous in 

the inefficiency model. Thus, using the intensity of adoption 

directly in the inefficiency model could lead to the problem 

of endogeneity. Consequently, to address the endogeneity 

issues associated with CSA adoption, the predicted values of 

adoption intensity were used in the estimation of the 

inefficiency model. This is in line with other studies such as 

Mgomezulu et al. (2022) and Anang et al. (2020) who used 

the predicted values of sustainable agricultural practices 

(SAP) adoption and improved variety adoption, 

respectively, to assess the determinants of TE. While 

Mgomezulu et al. (2022) used a two-stage censored Tobit 

model to assess the effect of SAP on technical and profit 

efficiency, Anang et al. (2020) used truncated regression to 

assess the effect of modern variety adoption on TE. Both 

studies, however, did not estimate TE and its determinants 

in a single step as suggested by Battese & Coelli (1995). 

This study therefore addresses the endogeneity issue and 

estimates TE and the determining factors in a single step 

using maximum likelihood estimation.   

Definition of variables for the study   

     The socioeconomic and demographic variables alongside 

their expected signs are presented in Table 1. Age of the 

respondents is expected to have an indeterminate influence 

on adoption intensity of CSA practices, while male farmers 

are anticipated to have higher adoption. Years of formal 
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education, cattle ownership, participation in off-farm work, 

access to agricultural extension, farmer group membership, 

farming experience and access to credit are all expected to 

have a positive influence on CSA adoption intensity and TE 

(Anang et al., 2022; Dokyi et al., 2021). However, distance 

to local market is expected to negatively influence intensity 

of adoption, while all the input variables are anticipated to 

positively influence maize output. 

Table 1. Definition and expected signs of variables 

included in the study 

Variable  Definition  Expected 

sign 

Socio-demographic variables 

Intensity of CSA Number of CSA 

practices adopted (count)   

Age  Age of farmers in years ± 

Sex Dummy: 1 = male and 0 

= female) + 

Education years Years of formal 

education ₊ 

Cattle ownership 1 if yes, 0 otherwise ₊ 

Off-farm 

activities 

1 if yes, 0 otherwise 

₊ 

Farmer group 

membership 

1 if yes, 0 otherwise 

₊ 

Extension access 1 if yes, 0 otherwise ₊ 

Distance to local 

market  

Distance to the local 

market in kilometers - 

Farm credit 1 if yes, 0 otherwise ₊ 

Land ownership Dummy: 1 = purchase; 2 

= rented; 3= inherited  ± 

Farming 

experience  

Numbers of years of 

maize farming ₊ 

Knowledge 

about CSA 

How long farmer has 

known about CSA + 

   

Inputs and output variables 

Maize output Quantity of maize yield 

in kilograms 

 

Farm size Maize land area in acres ± 

Labour  Quantity of labour in 

man-days ± 

Fertilizer Quantity of fertilizer in 

kilograms ± 

Ploughing Total cost of ploughing 

in Ghana cedis ± 

Capital  Value of farm capital ± 

RESULTS  

Socio-demographic characteristics of the sampled 

farmers   

The socio-demographic characteristics of the farmers are 

presented in Table 2. As shown in the table, majority of the 

respondents (79%) are male with a mean age of 41 years 

which is within the active age group for agricultural 

production. Smallholder farmers in the sample possessed 

averagely 5 years of formal education and had 

approximately 11 household members. Rural farm 

household in most developing nations usually have large 

household size since most farm households depend on 

household labour for farm operations. 

Furthermore, the result indicates that about 36% of the 

farmers owned cattle while 30% were engaged in other 

economic activities. This implies that about 70% of the 

respondents depend mainly on farming for their livelihood. 

Farm households that owned cattle are expected to be 

wealthier compared to farm households without cattle, and 

this could enhance adoption of CSA practices. This is 

because cattle ownership is typically used as a proxy for 

wealth in studies involving smallholder farmers (Anang et 

al., 2022). 

Table 2. Socio-demographic characteristic of 

smallholder maize producers 

Variable  Mean S. D. 

Min

. Max. 

Age  40.65 10.98 20 67 

Sex  0.789 0.409 0 1 

Education years  5.117 6.425 0 26 

Household size  10.76 5.954 2 28 

Cattle ownership  0.366 0.482 0 1 

Off-farm activities 0.300 0.459 0 1 

Farmers group 

member 0.303 0.460 0 1 

Extension access  0.669 0.471 0 1 

Distance to market  4.489 2.726 0.24 12 

Farm credit  0.374 0.485 0 1 

CSA training  0.520 0.500 0 1 

Knowledge about 

CSA  3.114 3.351 1 20 

     

Inputs and output variables 

Maize output 1846 1439 100 8500 

Farm size 4.401 2.726 1 17 

Labour  31.65 13.38 7 69 

Fertilizer 210.3 141.8 0 875 

Ploughing 364.5 224.1 75 1530 

Capital  172.6 134.9 12 910 
S. D. means standard deviation 

Furthermore, the distance to the local market is 4.5 km. 

It is expected that the longer the distance to the local market, 

the higher the transaction costs and the less likely a farmer 

may adopt new technology. The respondents had about 3 

years knowledge of CSA while about 52% have ever 

participated in CSA training. Also, about 30% of the 

respondents were members of a farmer group which could 

serve as medium for access to credit, extension services and 

general information on farming. The result shows that 67% 

and 37% had access to extension service and credit 

respectively.   

Averagely, farmers produced 1846 kg of maize (with a 

minimum of 100 kg and a maximum of 8500 kg) using an 

average farm size of 4.4 acres. According to Nyanteng and 

Seini (2000), farmers with farm size of 3 ha or less account 

for approximately 90% of the nation's food output. 

Smallholder farmers usually cultivate on a small scale due 

to resource constraints. The result further indicates that on 
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the average, a household used about 32 man-days of labour 

in production. The mean quantity of fertilizer applied was 

210 kg while the value of farm capital used in production 

was 174 Ghana cedis. Meanwhile, a household on average 

spent 364 Ghana cedis as the cost of ploughing their farm 

land.   

CSA practices adopted by farmers 

Table 3 shows the various CSA practices adopted by the 

smallholder maize farmers. Majority of the farmers 

comprising 63.7% applied inorganic fertilizer and a little 

over half of them (51.1%) applied organic fertilizer to 

alleviate the impact of CC. The study further revealed that 

many of the farmers adopted improved crop varieties (56%) 

and mixed cropping (53.7%) to alleviate the effects of CC. 

About 41% of the farmers adopted planting in rows to cope 

with CC impact. Row planting enhances plant population 

density, reduces weed growth, and increases output level. 

Row planting also contributes to soil moisture conservation. 

Again, the study indicates that some farmers adopted 

irrigation (33.7%), mixed farming (38.6%), crop rotation 

with legumes (36%), changing planting time/date (36%), 

and mulching (23.4%) in adapting to the impact CC. The 

results further show that less than 20% of respondents 

adopted cover crops and tree planting as CC coping 

strategies.  

Table 3. CSAPs adopted by farmers 

Variable  Freq.  Percent 

Irrigation  118 33.7 

Used of improved crop varieties  196 56.0 

Compost/organic fertilizer  179 51.1 

Crop rotation with legumes 126 36.0 

Application of inorganic fertilizer 223 63.7 

Used of mulching  82 23.4 

Used of cover crops 45 12.8 

Planting in rows 142 40.6 

Changing planting time/date 126 36.0 

Mixed farming  135 38.6 

Mixed cropping 188 53.7 

Tree planting  51 14.6 

The intensity of adoption of climate-smart agriculture 

practices  

The generalized Poisson regression model was used to 

estimate the factors affecting CSAPs adoption intensity and 

the results are presented Table 4. The likelihood ratio test 

with a chi-square value of 126.98 was statistically 

significant indicating the suitability of the generalized 

Poisson model for the analysis. The Wald chi square was 

statistically significant implying that exogenous variables 

included in the model jointly explained smallholder farmers’ 

intensity of adoption of the CSA practices.  

The results indicate that age is highly significant at 1% 

and positively influences the intensity of adoption of 

CSAPs. This implies that older farmers have a higher 

likelihood to adopt multiple CSA practices. Furthermore, 

male farmers were more likely to adopt multiple CSA 

practices compared to females. Also, years of education had 

a significant and positive influence on the extent of 

adoption. In other words, the more years a farmer spends in 

school, the more likely that the farmer will adopt multiple 

CSA technologies. Again, cattle ownership was significant 

at 5% and negatively influenced adoption intensity. This 

indicates that farmers who own cattle are less likely to adopt 

multiple CSA practices. Furthermore, the distance to the 

local market positively influenced the number of CSA 

practices that farmers adopted, which contradicts the study’s 

a prior expectation that proposes that an increase in distance 

to the local market will decrease the adoption of CSA 

practices. In line with a priori expectations, training on CSA 

practices positively influenced the extent of adoption of 

CSA practices at a significant level of 1%. Additionally, 

how long a farmer had known about CSA practices 

positively correlated with the intensity of adoption. 

Table 4. GP regression estimates of factors affecting 

adoption intensity of CSA technologies 

Variables  Coefficient S. E. 

Age  0.010*** 0.003 

Sex  0.143* 0.080 

Education years  0.024*** 0.005 

Household size  0.006 0.005 

Cattle ownership  -0.157** 0.069 

Off-farm activities 0.069 0.062 

Farmers group membership -0.011 0.064 

Extension access  -0.016 0.071 

Distance to the local market  0.029*** 0.011 

Farm credit  0.062 0.061 

Farm size  -0.015 0.011 

CSA training  0.443*** 0.068 

Knowledge about CSA  0.035*** 0.009 

Constant 0.359** 0.167 
   

Model diagnostics   

LR chi2 (13) 126.98***  

Log-likelihood  -801.96  

Pseudo R2 0.0734  
***, **, and * represented 1%, 5% and 10% significant level 

respectively 

Maximum likelihood estimates of the stochastic 

production frontier  

The results of the maximum likelihood estimation of the 

stochastic production frontier are presented in Table 5.  

Table 5. Maximum likelihood estimates of the stochastic 

production frontier 

Variables Coefficient S. E. 

Farm size 1.155*** 0.409 

Labour quantity 0.192 0.242 

Seed quantity 0.066 0.163 

Fertilizer quantity 0.032 0.035 

Ploughing cost -0.517* 0.271 

Capital  0.040 0.026 

Constant  0.262*** 0.054 

Return to scale 1.231   

Wald chi2 789.35***  
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*** and * represent 1% and 10% significance level respectively. 

Number of observations = 350.  

The significant value of the Wald chi-square (789.35) 

indicates that the input variables jointly explain the output 

variations of the maize producers. The result depicts an 

increasing return to scale (1.231) from the summation of all 

coefficients of the Cobb-Douglas function. This implies that 

a 1% increase in all the variable inputs is expected to 

increase output by 1.23%. The results further show that a 1% 

increase in farm size increases maize output by 1.16% 

holding all factors constant. Also, an increase in ploughing 

cost by 1% resulted in a decrease in output by 0.517% 

holding other variables constant.  

Distribution of technical efficiency scores 

The distribution of the TE scores is provided Table 6. The 

farmers had an average TE of 74% suggesting that with the 

same level of input and the existing technology, they could 

potentially increase output by 26%. Farmer are therefore 

making a significant loss in their production which may be 

attributed to managerial and environmental factors. Close to 

67% of the respondents had TE levels exceeding 70%, 

suggesting that majority of the farmers are producing at a 

relatively high TE level. Farmers whose TE did not exceed 

50% were only about 8%.  

Table 6. Distribution of technical efficiency scores 

Efficiency range Frequency Percent  

Up to 0.30 2 0.57 

0.31 – 0.40 5 1.43 

0.41 – 0.50 20 5.71 

0.51 – 0.60 19 5.43 

0.61 – 0.70 71 20.29 

0.71 – 0.80 101 28.86 

0.81 – 0.90 122 34.86 

0.91 – 1.00 10 2.86 

Total  350 100 

Mean 0.74  

Maximum 0.92  

Minimum 0.23  

Estimation of factors influencing technical inefficiency 

Table 7 depicts the variables influencing the technical 

inefficiency of smallholder maize farmers. A positive 

coefficient denotes an increase in technical inefficiency 

while a negative coefficient depicts an increase in TE. 

Adoption intensity had a negative and significant 

influence on technical inefficiency. This implies that 

smallholder farmers who adopt more CSA practices are 

more technically efficient compared to farmers who adopt 

less or none of the CSA practices. Again, years of education 

decreased TE, which is contrary to the study’s a priori 

expectation. Furthermore, maize farming experience 

positively influenced TE inferring that producers who have 

farmed maize for more years are more efficient than those 

with fewer years of experience. Contrary to expectations, 

access to extension decreased the TE of maize producers. 

The study also revealed that farmers who purchased their 

land were less efficient than those who inherited their farm 

lands. 

Table 7. Maximum likelihood estimation of factors 

influencing technical inefficiency 

Variables Coefficient Std. Err. 

Adoption intensity of CSA -0.215** 0.097 

Age 0.024 0.016 

Gender -0.329 0.309 

Education years 0.041* 0.023 

Cattle ownership -0.399 0.318 

Maize experience -0.046** 0.019 

FBO membership -0.387 0.311 

Extension access 0.567** 0.284 

Farm credit -0.352 0.258 

Land ownership   
Rented land -0.440 0.454 

Inherited land -0.558** 0.275 

Constant  -0.875 0.675 
** and * represent 5% and 10% significance level respectively.  

DISCUSSIONS 

Adoption of CSA practices by farmers 

Generally, farmers adopted multiple CSA practices to 

alleviate the impact of CC. For instance, majority (63.7%) 

of the farmers in the study applied inorganic fertilizer while 

a little over half of them (51.1%) applied organic fertilizer 

to lessen the influence of CC. The application of fertilizer 

(organic or inorganic) helps to improve the nutrient content 

of the soil and helps to promote an increase in maize 

productivity and hence an increase in economic returns. 

These results affirm the studies by Arif et al. (2021) who 

established a positive relationship between the application 

of inorganic and organic fertilizer and maize productivity 

and farm profitability.  

The study further revealed that many of the farmers 

adopted improved crop varieties (56%) and mixed cropping 

(53.7%) among other practices to lessen the shocks of CC. 

This finding supports the studies by Ifie et al. (2022) who 

indicated that there is a positive effect of improved varieties 

of maize on yields of smallholder farmers. Hence, farmers 

adopting improved varieties may seek to maximize their 

output level whilst farmers adopting mixed cropping 

technology may be seeking to decrease the risk of a total 

crop loss due to CC. 

Determinants of adoption intensity of climate-smart 

agriculture practices 

The results show that age positively influences the rate 

of adoption of CSAPs. This implies that older farmers are 

more likely to adopt multiple CSA practices since they are 

more experienced in farming. The results contradict the 

findings of Danso-Abbeam et al. (2017) who indicated in 

their studies that younger farmers were comparatively more 

likely to embrace modern technologies. Their explanation 

was that younger farmers are more adventurous, innovative 

and dynamic with regards to technology adoption in 

comparison with older farmers. These older farmers may 
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find it difficult to switch to new methods of farming and may 

prefer to stick to their conventional farming methods in 

order to avoid taking higher risks. Our findings suggest that 

older farmers with much knowledge of climate variability in 

agriculture are more likely to adopt multiple strategies to 

mitigate the impact of CC.   

The results also show that male farmers are more likely 

to adopt more CSA practices than females. A possible 

explanation is that female farmers are more resource-

constrained compared to male farmers which limits their 

adoption rate since the adoption of new technology involves 

a cost. The result aligns with the findings of Addai et al. 

(2022) who observed that men were more likely to adopt 

irrigation because of their greater access to productive 

resources. 

A farmer’s years of formal education also had a positive 

relationship with adoption intensity of CSAPs. In other 

words, the more years a farmer spends in school the more 

likely the farmer is to adopt multiple CSA technologies. This 

is not only consistent with the study’s a prior expectation 

that education increases the level of adoption of CSA, but it 

also goes to affirm the findings of Danso-Abbeam et al. 

(2017) and Issahaku & Abdulai (2020). Danso-Abbeam et 

al. (2017) posited that information about technologies is 

easily accessed by educated farmers and hence increases 

their adoption if the utility is appealing. Also, Bruce (2015) 

indicated that education is a key determinant of the adoption 

of improved rice variety.  

Cattle ownership had a significantly negative influence 

on the intensity of adoption of CSA practices suggesting that 

farmers who own cattle are less likely to adopt multiple CSA 

practices. Owners of cattle are considered to be relatively 

wealthier and thus expected to have the wherewithal to adopt 

modern technology. However, the result is contrary to our 

expectation. 

Distance to the local market positively correlated with 

CSAPs adoption intensity. This result, however, contradicts 

a prior expectation of the study that proposes that an 

increase in distance to the local market will decrease the 

adoption of CSA practices since the cost of inputs will 

increase with an increase in distance to the local input shops. 

The result contradicts the finding of the study by Donkoh & 

Awuni (2011), which posits that distance to the local market 

or input shops reduces the adoption of inputs as it has the 

potential of making inputs expensive due to the extra cost 

that may be associated with transportation.  

Training of farmers on the CSA practices positively 

influenced the intensity of adoption. This confirms a prior 

expectation of the study that training exposes farmers to the 

knowledge and skill set required for adoption of CSA 

technology. Hence, training empowers farmers to apply the 

knowledge and skill to improve their coping strategy to CC. 

This further affirms the findings of studies by Azumah et al. 

(2017) and Donkoh & Awuni (2011) which revealed that 

training is an added input which results in an increase in the 

adoption of technologies by farmers.  

Furthermore, how long a farmer has been exposed to 

CSA practices positively influenced the farmer’s adoption 

of these practices. The result is expected because the longer 

a farmer knows about a technology and its associated 

benefits, the higher the likelihood of adoption. This implies 

that farmers’ familiarity with technologies positively 

influences their adoption rate. 

Technical efficiency of maize farmers  

From the results of the stochastic frontier analysis, two 

out of the 5 conventional input variables significantly 

influence the output of maize. A 1% increase in farm size 

increases maize output by 1.16% holding all factors 

constant. This result is consistent with other findings such as 

Adzawla & Alhassan (2021). The study also revealed that an 

increase in ploughing cost by 1% resulted in a decrease in 

output by 0.517% holding all other factors constant. The 

result contradicts the findings of Silva et al. (2019), who 

observed a positive influence of ploughing on the output of 

cereal-based crop farmers. The mean TE was estimated at 

74%, which points to the existence of inefficiency in 

production among the farmers. With the same input level, 

farmers could potentially increase their output level by 26%.   

Effect of CSA adoption intensity on technical efficiency  

Climate-smart agricultural practices are intended to 

alleviate the impact of CC, thereby enhancing the 

productivity and incomes of farmers. The findings of this 

study support this assertion as the adoption intensity of CSA 

practices positively influenced TE level of maize farmers in 

the study area. This indicates that producers who adopt more 

CSA practices are more technically efficient compared to 

farmers who adopt less or none of the CSA practices. These 

results confirm the a priori expectation that the intensity of 

adoption of CSA has a negative influence on technical 

inefficiency, indicating that producers are more technically 

efficient if they adopt more CSA practices. The results 

confirmed that of Adzawla & Alhassan (2021), who 

identified a positive effect of adaptation strategies on maize 

TE. Similarly, the findings agree with that of Anang et al. 

(2020) who observed a positive effect of adoption of 

improved maize variety on TE of smallholder farmers.  

Other determinants of technical efficiency  

Other factors influencing TE of maize farmers in the 

study area include years of schooling, which contrary to 

expectation, decreased TE. This could be attributed to 

educated farmers engaging in other economic activities 

which may reduce their time allocation to farming thereby 

reducing their efficiency. Farmers with formal education 

have a higher likelihood to obtain off-farm employment, 

hence may be part-time farmers, whereas those without 

formal education are often full-time farmers as reported by 

Abdulai et al. (2018). Educated farmers who engage in other 

work/income activities spend less time on their farms 

making them more technically inefficient in their maize 

production. The results however contrary to expectation 

other researchers in Ghana have reported the outcome, 

despite it being unexpected. In northern Ghana, Donkoh et 

al. (2013), found that educated farmers were less technically 

proficient. Anang et al. (2022) also observed that farmers 

with education recorded lower TE scores. Similar findings 

were made by Asante et al. (2014), who found educated 



 
ISSN: 2338-1345 e ISSN 2808-8948  – Vol. 13 (1) 8-19  https://ojs.bakrie.ac.id/index.php/APJSAFE/about  

16 

 

farmers in Ghana to be less technically proficient than 

uneducated ones.  

Maize farming experience had a positive effect on TE 

indicating that producers who have farmed maize for a 

longer time are more efficient than those farmers with fewer 

years of maize farming experience. Experienced farmers 

have acquired adequate skill and knowledge which enable 

them to maximize output relative to less experienced 

farmers. This agrees with Addai & Owusu (2014) who found 

that maize farming experience increased TE of smallholder 

maize producers in Ghana.  

On the contrary access to extension decreases TE of 

maize production in the study area. Extension access was 

expected to improve TE since it serves as an avenue for 

agricultural information dissemination to the farmers on 

how to maximize their output and new technologies. While 

the result is unexpected, it could suggest that the information 

extension officers share with farmers may not match with 

their information needs.   

Farmers who inherited their land were more efficient 

than farmers who purchased their farm lands. In most 

Ghanaian farming communities, few farmers purchase their 

farmlands whereas majority of the land for farming is 

inherited. Farmers who inherit farm lands may have access 

to more fertile lands and the freedom to improve the land 

over a long-term compared to the few farmers who purchase 

their land for farming. 

CONCLUSIONS   

The study assessed the effect of CSA adoption intensity 

on TE of maize production among small-scale producers in 

Wa-East District of Ghana. The generalized Poisson 

regression model and stochastic frontier analysis were used 

in the analysis to draw conclusions.  

The study concluded that age, sex, years of education, 

distance to the local market, CSA training, and years of 

exposure to CSA practices positively influenced the 

adoption intensity of CSAPs. Specifically, CSA training 

enhanced the adoption of CSA practices, underscoring the 

need to enhance farmers’ expertise on climate change 

adaptation. Again, the results discovered that CSA adoption 

intensity improved TE of maize farming. This means that in 

the face of CC, promoting adoption of CSA practices is 

critical to improve the TE of smallholder farmers. 

The study recommends that farmers should be trained on 

CSA practices to increase their level of knowledge and 

adoption of the practices since higher adoption of CSAPs 

correlates positively with TE. Training will expose farmers 

to the benefits of CSA practices and the technical know-how 

to apply these practices effectively. The study also calls for 

the provision of education at the rural level to enhance 

adoption of CSA practices. CSA adoption increased with 

formal education, indicating that provision of formal 

education is critical to accelerate uptake of CSA practices. 

This should be augmented with the provision of 

informal/non-formal education especially to adult learners 

to enhance their numeracy and decision-making. 

Additionally, it was observed that farmers who inherited 

their lands were more efficient, suggesting that land tenure 

security improves efficiency of production. The study 

therefore proposes land ownership reforms that guarantees 

land tenure security to allow long-term investment in land 

management to improve efficiency of production of 

smallholder farmers. 
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