Moisture sorption isotherm modelling and thermodynamic functions of White Maize Ogi enriched with Drumstick (Moringa oleifera) seeds

  • Oluwatoyin Ajoke Oladeji Olusegun Agagu University of Science and Technology, Nigeria
  • Kehinde Adekunbi Taiwo Department of Food Science and Technology, Obafemi Awolowo University, Nigeria
  • Charles Taiwo Akanbi Department of Food Science and Technology, Obafemi Awolowo University, Nigeria
Keywords: sorption isotherm models, isosteric heat, enthalpy-entropy compensation, monolayer moisture, isokinetic temperature, white maize ogi

Abstract

The study predicted the behaviour of enriched white maize ogi during storage at different temperature and; evaluate thermodynamic functions and fitness of experimental data into sorption models. Moisture sorption isotherm of sample products was determined for different water activities, aw, (0.1-0.8) at room temperature RT, (28±2), 35 and 40 oC using gravimetric method. The experimental data was fitted into four models (GAB, BET, Hasley and Oswin), fitness of the models assessed statistically by calculating coefficient of determination (r2), root mean square (RMS), and mean relative percent deviation modulus (E) and thermodynamics properties determined using Clausius-Clapeyron equation. Results showed that equilibrium moisture content of the product increased with increasing water activity, showing type II sorption isotherm, and decrease with increase in temperature at the same water activity. Statistical parameters revealed that GAB and Oswin models had better fit (r2 > 97%, E < 10%) for the experimental data than other models. Monolayer moisture contents, Mo, energy requirement and spontaneity of moisture sorption behaviour of Moringa oleifera seeds enriched maize products (Ogi-Moringa) were affected by method of incorporation of Moringa oleifera seed during processing. Sample with fermented Moringa oleifera seed had higher optimum keeping moisture content (3.928-7.33) as presented by Mo and require greater energy, to remove water molecules than required for the other sample.

Downloads

Download data is not yet available.

References

Adeniyi, A.B., Ijarotimi, O.S. Gwer, J.H. (2018). Phytochemical, Scavenging Properties and Glycemic Index of Soy-Enriched Maize Base Gruel Fortified with Moringa oleifera Leaves and Wonderful Kola. Asian Food Science Journal, 2(2): 1-11.

Adeoye, B. K., Oladejo, C. J., Adeniran, A. D. and Opawuyi H. T. (2020). Sorption Isotherm of Corn Chips Made from Blends of Corn Flour and Bambara Groundnut Flour. American Journal of Chemical Engineering. 8(3): 70-75.

Ahmed, M.W. and Islam, M.N. (2018) Moisture Sorption Characteristics of Selected Commercial Flours (Wheat, Rice and Corn) of Bangladesh. American Journal of Food Science and Technology, 6(6): 274-279. DOI: 10.12691/ajfst-6-6-7.

Akanbi, C.T., Adeyemi, R.S. and Ojo, A. (2006). Drying Characteristics and Sorption Isotherm of Tomato Slices. Journal of Food Engineering, 73: 157-163.

Al-Mahasneh, M.A., Rababah, M. T. and Yang, W. (2007). Moisture Sorption Thermodynamics of Defatted Sesame Meal (DSM). Journal of Food Engineering, 81, 735–740.

Al-Muhtaseb, A. H., McMinn, A. M. and Magee, T. R. (2002). Moisture Sorption Isotherm Characteristics of Food Products: A review. Trans I Chem E. 80(c):118- 128.

Al-Muhtaseb, A. H., McMinn, W. A. and Magee, T. R. A. (2004) Water Sorption Isotherms of Starch Powders Part I, Mathematical Description of Experimental Data. Journal of Food Engineering, 61, 297-307.

AOAC (2005). Official Methods of Analysis of Association of Official Analytical Chemists (AOAC) International (18th ed.), Washinton, DC, USA.

Aouaini, F, Knani, S., Yahia, M. B. and Lamine, A.B. (2015). Statistical Physics Studies of Multilayer Adsorption Isotherm in Food Materials and Pore Size Distribution. Physica A, 432: 373-390.

Bell, I. N. and Labuza, T. P. (2000) Moisture sorption, Practical Aspects of Isotherm Measurement and Use (2nd ed.), 14-32, 57-69. St Paul, M.N: American Association of Cereal Chemists.

Cahyanti, M. N., and Pattiserlihum, A. (2018). Thermodynamic Properties of Water Adsorption on Gaplek Flour Fortified with Red Bead Tree Seed. Molekul, 13(2): 114-122.

Chinma, C. E., Ariahu, C. C., and Alakali, J. (2013). Moisture Sorption and Thermodynamic Properties of Cassava Starch and Soy Protein Concentrate Based Edible films. International Journal of Food Science and Technology, 48(11): 2400-2407.

Choque-Quispe, D., Ramos-Pacheco B., Choque-Quispe Y., Aguilar-Salazar R.F. (2022). Storage Condition and Adsorption Thermodynamic Properties of Purple Corn. Foods, 11(6). DOI: 10.3390/foods11060828.

Chowdhury, M. M., Huda, M. D., Hossain, M. A. and Hassan, M. S. (2006). Moisture Sorption Isotherms for Munbean (Virgna radiate L.). Journal of Food Engineering, 74: 462-467.

Kane, C. S. E., Kouhila, M., Lamharrar A., Idlimam, A. and Mimet, A. (2008). Moisture Sorption Isotherms and Thermodynamic Properties of Tow Mints: Mentha pulegium and Mentha rotundifolia. Revue des Energies Renouvelables, 11 (2): 181-195.

Kaymak-Ertekin, F.and Gedik, A. (2005) Kinetic Modelling of Quality Deterioration in Onions During Drying and Storage. Journal of Food Engineering, 68: 443-453.

McMinn, W. A. M., McKee, D. J. and Magee, T. R. A.(2007). Moisture Adsorption Behaviour of Oatmeal Biscuit and Oat Flakes. Journal of Food Engineering, 79: 481-493.

Oladeji O.A., Taiwo, K.A., Ishola, M.M. and Oladeji, B.S. (2017). Nutritional and Quality Characteristics of White Maize Ogi Flour Enriched with Moringa oleifera Seed. Biotechnology Journal International, 18 (1); 1-11.

Oluwamukomi, M. O. (2009). Adsorption Isotherm Modeling of Soy-Melon-Enriched and Un-enriched ‘gari’ Using GAB Equation. African Journal of Food Science.3(5): 117-124.

Oyelade, O.J., Tunde-Akintunde, T.Y., Igbeka, J.C., Oke, M.O. & Raji, O.Y. (2008). Modelling Moisture Sorption Isotherms for Maize Flour, Journal of Stored Products Research, 44(2), 179-185.

Peng, G., Chen, X., Wu, W. and Jiang, X. (2007). Modeling of Water Sorption Isotherm for Corn Starch. Journal of Food Engineering, 80: 562-567.

Rosa, D. P., Evangelista, R. R. Borges Machado, A. L., Sanches, M. A. R., and Telis-Romero, J. (2021). Water Sorption Properties of Papaya Seeds (Carica papaya L.) Formosa Variety: An assessment under Storage and Drying Conditions. LWT-Food Science and Technology, 138, 110458.

Saberi, B., Vuong Q.V., Chockchaisawasdee, S. Golding J.B., Scarlet C.J. Stathopoulos C.E. (2015). Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models. Foods, 5(1).

Sahin, S. and Sumnu, S.G. (2006) Physical Properties of Foods. Springer Science Publisher. pp 39-49, 209-223.

Sahin, S. and Sumnu, S.G. (2006). Physical Properties of Foods. Springer Science Publisher. pp 39-49, 209-223.

Samapounda, S., Devlieghere, F., De Meulenaer, B., Atukwase, A., Lamboni, Y. and Debevere, J. M. (2007) Sorption Isotherms and Isosteric Heats of Sorption of Whole Yellow Dent Corn. Journal of Food Engineering, 79, 168-175.

Sandoval, A. J. Barreiro, J.A., Blanco, D, De Sousa, A. and Gimenez C. (2020). Sorption Characteristics of Peeled Beans and Shells of Fermented and Dry Trinitario Cocoa Beans (Theobroma cacao L.) Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 49-45.

Seid, R. M. and Hensel, O. (2012). Experimental Evaluation of Sorption Isotherms of Chili Pepper, An Ethiopian Variety, Mareko Fana (Capsicum annum L.). Agricultural Engineering International: CIGR Journal, 14 (4): 163-172.

Talla, A. (2014). Predicting Sorption Isotherms and Net Isosteric Heats of Sorption of Maize Grains at Different Temperatures. International Journal Food Engineering, 10: 393–401.

Thanuja D. and Ravindra M. R. (2012). Thermodynamic Analysis of Moisture Sorption Characteristics of Cheese-puri Mix. Journal of Food processing and preservation.38(1).

Togrul, H. and Arslan, N. (2007). Moisture Sorption Isotherms and Thermodynamic Properties of Walnut Kernels. Journal of Stored Products Research, 43, 252–264.

Wang, P., Fu, N., Li, D., Wang, L.(2017). Predicting Storage Conditions for Rice Seed with Thermodynamic Analysis. International Journal of Food Engineering, 13, 0129.

Yogendrarajah P., Samapundo S., De Vlieghere F., De Saeger S., De Meulenaer B. (2015). Moisture Sorption Isotherms and Thermodynamic Properties of Whole Black Peppercorns (Piper nigrum L.). LWT-Food Science and Technology 64 (1) 177-188. DOI: http://dx.doi.org/10.1016/j.lwt.2015.05.045.

Zhang, Z., Li, X., Jia, H., and Liu, Y. (2022). Moisture Sorption Isotherms and Thermodynamic Properties of Tiger Nuts: An Oil-Rich Tuber. LWT – Food Science and Technology, 167.

Published
2024-12-30
How to Cite
Oladeji, O. A., Taiwo, K. A., & Akanbi, C. T. (2024). Moisture sorption isotherm modelling and thermodynamic functions of White Maize Ogi enriched with Drumstick (Moringa oleifera) seeds. Asia Pacific Journal of Sustainable Agriculture, Food and Energy, 12(2), 61-69. https://doi.org/10.36782/apjsafe.v12i2.370
Section
Food Science and Food Technology